skip to main content


Search for: All records

Creators/Authors contains: "LeFevre, Gregory H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Isothiazolinones biocides are water-soluble, low molecular weight, nitrogenous compounds widely used to prevent microbial growth in a variety of applications including personal care products and building façade materials. Because isothiazolinones from buildings wash off and enter stormwater, interactions with terrestrial plants may represent an important part of the environmental fate of these compounds ( e.g. , in green stormwater infrastructure). Using the model plant Arabidopsis thaliana grown hydroponically, we observed rapid (≥99% within 24 hours), plant-driven removal of four commonly used isothiazolinones: benzisothiazolinone (BIT), chloromethylisothiazolinone, methylisothiazolinone, and octylisothiazolinone. No significant differences in uptake rate occurred between the four compounds; therefore, BIT was used for further detailed investigation. BIT uptake by Arabidopsis was concentration-dependent in a manner that implicates transporter-mediated substrate inhibition. BIT uptake was also minimally impacted by multiple BIT spikes, suggesting constituently active uptake. BIT plant uptake rate was robust, unaffected by multiple inhibitors. We investigated plant metabolism as a relevant removal process. Proposed major metabolites that significantly increased in the BIT-exposure treatment compared to the control included: endogenous plant compounds nicotinic acid (confirmed with a reference standard) and phenylthioacetohydroximic acid, a possible amino acid–BIT conjugate, and two accurate masses of interest. Two of the compounds (phenylthioacetohydroximic acid and TP 470) were also present in increased amounts in the hydroponic medium after BIT exposure, possibly via plant excretion. Upregulation of endogenous plant compounds is environmentally significant because it demonstrates that BIT impacts plant biology. The rapid plant-driven isothiazolinone removal observed here indicates that plant-isothiazolinone processes could be relevant to the environmental fate of these stormwater compounds. 
    more » « less
  2. Low-impact, green infrastructure systems such as biofilters, particularly when amended with biochar, can help address chemical pollution conveyed via stormwater that is increasingly posing a threat to aquatic ecosystems and groundwater quality. Although removal of organic contaminants including pesticides by biochar-amended systems has been studied, the role of a biofouling layer on contaminant removal, biotransformation, and filter lifetime remains poorly understood. This study evaluated the removal of the pesticides atrazine, imidacloprid, and clothianidin in biologically active biochar-amended columns through complete exhaustion of contaminant removal capacity. The resultant data indicate that biological processes accounted for 20–36% of overall removal in the biochar-amended sand columns. In addition, a combined target and suspect screening approach using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS) was employed to evaluate the potential transformation of these three pesticides and release of the transformation products (TPs). All TPs detected in the effluent remained below 2.5% of their respective parent influent concentrations for the duration of the experiment. Furthermore, at a biochar application rate of 0.5 wt%, the presence of an active biofilm prolonged the filter lifetime by 1.8–2.3 times compared to a fouled but inactive filter, where removal was presumably dominated by adsorption only. Scenario modelling estimates showed that biochar-amended biofilters could last at least 17 years before exceeding aquatic life threshold values at biochar-application rates as low as 1 wt% (5 vol%) in a representative case study. Results of this study provide novel insight on pesticide TP formation in biochar-amended biofilters and estimation of filter lifetimes. 
    more » « less
  3. Wastewater effluent-dominated streams are becoming increasingly common worldwide, including in temperate regions, with potential impacts on ecological systems and drinking water sources. We recently quantified the occurrence/spatiotemporal dynamics of pharmaceutical mixtures in a representative temperate-region wastewater effluent-dominated stream (Muddy Creek, Iowa) under baseflow conditions and characterized relevant fate processes. Herein, we quantified the ecological risk quotients (RQs) of 19 effluent-derived contaminants of emerging concern (CECs; including: 14 pharmaceuticals, 2 industrial chemicals, and 3 neonicotinoid insecticides) and 1 run-off-derived compound (atrazine) in the stream under baseflow conditions, and estimated the probabilistic risks of effluent-derived CECs under all-flow conditions ( i.e. , including runoff events) using stochastic risk modeling. We determined that 11 out of 20 CECs pose medium-to-high risks to local ecological systems ( i.e. , algae, invertebrates, fish) based on literature-derived acute effects under measured baseflow conditions. Stochastic risk modeling indicated decreased, but still problematic, risk of effluent-derived CECs ( i.e. , RQ ≥ 0.1) under all-flow conditions when runoff events were included. Dilution of effluent-derived chemicals from storm flows thus only minimally decreased risk to aquatic biota in the effluent-dominated stream. We also modeled in-stream transport. Thirteen out of 14 pharmaceuticals persisted along the stream reach (median attenuation rate constant k < 0.1 h −1 ) and entered the Iowa River at elevated concentrations. Predicted and measured concentrations in the drinking water treatment plant were below the human health benchmarks. This study demonstrates the application of probabilistic risk assessments for effluent-derived CECs in a representative effluent-dominated stream under variable flow conditions (when measurements are less practical) and provides an enhanced prediction tool transferable to other effluent-dominated systems. 
    more » « less
  4. null (Ed.)
    Neonicotinoids in aquatic systems have been predominantly associated with agriculture, but some are increasingly being linked to municipal wastewater. Thus, the aim of this work was to understand the municipal wastewater contribution to neonicotinoids in a representative, characterized effluent-dominated temperate-region stream. Our approach was to quantify the spatiotemporal concentrations of imidacloprid, clothianidin, thiamethoxam, and transformation product imidacloprid urea: 0.1 km upstream, the municipal wastewater effluent, and 0.1 and 5.1 km downstream from the wastewater outfall (collected twice-monthly for one year under baseflow conditions). Quantified results demonstrated that wastewater effluent was a point-source of imidacloprid (consistently) and clothianidin (episodically), where chronic invertebrate exposure benchmarks were exceeded for imidacloprid (36/52 samples; 3/52 > acute exposure benchmark) and clothianidin (8/52 samples). Neonicotinoids persisted downstream where mass loads were not significantly different than those in the effluent. The combined analysis of neonicotinoid effluent concentrations, instream seasonality, and registered uses in Iowa all indicate imidacloprid, and seasonally clothianidin, were driven by wastewater effluent, whereas thiamethoxam and imidacloprid urea were primarily from upstream non-point sources (or potential in-stream transformation for imidacloprid urea). This is the first study to quantify neonicotinoid persistence in an effluent-dominated stream throughout the year—implicating wastewater effluent as a point-source for imidacloprid (year-round) and clothianidin (seasonal). These findings suggest possible overlooked neonicotinoid indoor human exposure routes with subsequent implications for instream ecotoxicological exposure. 
    more » « less
  5. null (Ed.)